Skip to main content
Log in

Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under different conditions, arose by varying the governing parameters, are scrutinized and discussed through tables and graphs. A comparison is associated with previously accomplished results and examined to be in an exceptional agreement. The culminations evidently disclose that the porosity parameter and the Reynolds number suppress the microrotation and velocity, while material parameters produce opposite effects. The thermal radiation phenomenon downturns the temperature curves and enhances the heat transfer rate on the lower wall of channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vogel WM, Patterson AM. An experimental investigation of additives injected into the boundary layer of an under-water body. Pacific Naval Lab of the Defense Research Board of Canada Report; 1964. p. 64–2.

  2. Hoyt JW, Fabula AG. The effect of additives on fluid friction. US Naval Ordinance Test Station Report; 1964.

  3. Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16:1–18.

    Google Scholar 

  4. Eringen AC. Theory of thermo-microfluids. J Math Anal Appl. 1972;38:480.

    Article  Google Scholar 

  5. Fusi L, Farina A. Peristaltic axisymmetric flow of a Bingham fluid. Appl Math Comput. 2018;320:1–15.

    Article  Google Scholar 

  6. Sara Abdelsalam I, Vafai K. Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. Eur J Mech B/Fluids. 2017;65:398–411.

    Article  Google Scholar 

  7. Sher Akbar N, Razaa M, Ellahi R. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Comput Methods Prog Biol. 2016;130:22–30.

    Article  Google Scholar 

  8. Sheikholeslami M, Behnoush R, Milad D, Ahmad S, Zhixiong L, Truong KN. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mas Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  9. Abbasi FM, Shehzad SA. Heat transfer analysis for peristaltic flow of Carreau–Yasuda fluid through a curved channel with radial magnetic field. Int J Heat Mass Transf. 2017;115:777–83.

    Article  Google Scholar 

  10. Dejam M. Advective–diffusive–reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Int J Heat Mass Transf. 2019;128:1307–21.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Hatami M, Ganji DD. Micropolar fluid flow and heat transfer in a permeable channel using analytical method. J Mol Liq. 2014;194:30–6.

    Article  CAS  Google Scholar 

  12. Mohd-Ghazali N, Estellé P, Halelfadl S. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. J Therm Anal Calorim. 2019;138:937–45.

    Article  CAS  Google Scholar 

  13. Hayat T, Tanveer A, Alsaadi F, Mousa G. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions. J Magn Magn Mater. 2016;403:47–59.

    Article  CAS  Google Scholar 

  14. Khan MU, Zuhra S, Alam M, Nawaz R. Solution to Berman’s model of viscous flow in porous channel by optimal homotopy asymptotic method. J Eng Appl Sci. 2017;36:191–200.

    Google Scholar 

  15. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech. 2019;344:319–33.

    Article  Google Scholar 

  16. Ramadevi B, Anantha Kumar K, Sugunamma V, Ramana Reddy JV, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorim. 2019;139:1–15. https://doi.org/10.1007/s10973-019-08477-1.

    Article  CAS  Google Scholar 

  17. Abbas Z, Mushtaq T, Shehzad SA, Rauf A, Kumar R. Slip flow of hydromagnetic micropolar nanofluid between two disks with characterization of porous medium. J Braz Soc Mech Sci. 2019;41:465. https://doi.org/10.1007/s40430-019-1974-6.

    Article  CAS  Google Scholar 

  18. Hassan H, Rashidi MM. An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. Int J Numer Methods Heat Fluid Flow. 2014;24(2):419–37.

    Article  Google Scholar 

  19. Shamshuddin MD, Thumma T. Numerical study of a dissipative micropolar fluid flow past an inclined porous plate with heat source/sink. Propuls Power Res. 2019;8(1):56–68.

    Article  Google Scholar 

  20. Riaz MB, Atangana A, Iftikhar N. Heat and mass transfer in Maxwell fluid in view of local and non-local differential operators. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09383-7.

    Article  Google Scholar 

  21. Hanif H, Khan I, Shafie S. Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09256-z.

    Article  Google Scholar 

  22. Abbas N, Malik MY, Nadeem S. Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput Methods Prog Biomed. 2020;185:105136. https://doi.org/10.1016/j.cmpb.2019.105136.

    Article  Google Scholar 

  23. Rauf A, Shehzad SA, Abbas Z, Hayat T. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo–Christov double diffusion. Appl Math Mech Engl Ed. 2019;40(10):1471–86.

    Article  Google Scholar 

  24. Ahmad S, Ashraf M, Ali K. Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium. J Appl Mech Tech Phys. 2019;60:996–1004.

    Article  CAS  Google Scholar 

  25. Mandal IC, Mukhopadhyay S. Nonlinear convection in micropolar fluid flow past an exponentially stretching sheet in an exponentially moving stream with thermal radiation. Mech Adv Mater Struct. 2018. https://doi.org/10.1080/15376494.2018.1472325.

    Article  Google Scholar 

  26. Rashidi MM, Mohimanian Pour SA, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun Nonlinear Sci Numer Simul. 2011;16:1874–89.

    Article  Google Scholar 

  27. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  28. Gangadhar K, Lakshmi Narayana K, Sathies Kumar P, Rushi Kumar B. MHD micropolar fluid flow over a stretching permeable sheet in the presence of thermal radiation and thermal slip flow: a numerical study. IOP Conf Ser MSE. 2017;263:062010.

    Google Scholar 

  29. Pradhan SR, Baag S, Mishra SR, Acharya MR. Free convective MHD micropolar fluid flow with thermal radiation and radiation absorption: a numerical study. Heat Transf. 2019;48(6):2613–28. https://doi.org/10.1002/htj.21517.

    Article  Google Scholar 

  30. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2018;136:2477–85. https://doi.org/10.1007/s10973-018-7901-8.

    Article  CAS  Google Scholar 

  31. Bhatti MM, Abbas T, Rashidi MM. Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-Newtonian nanofluid through a porous shrinking sheet. J Magn. 2016;21(3):468–75.

    Article  Google Scholar 

  32. Singh K, Kumar M. Influence of chemical reaction on heat and mass transfer flow of a micropolar fluid over a permeable channel with radiation and heat generation. J Thermodyn. 2016;2016:1–10. https://doi.org/10.1155/2016/8307980.

    Article  CAS  Google Scholar 

  33. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018;135:305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  34. Fakour M, Vahabzadeh A, Ganji DD, Hatami M. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq. 2015;204:198.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M. Thermal radiation influence on nanofluid flow in a porous medium in the presence of Coulomb forces using CVFEM. 2019. pp. 623–47. https://doi.org/10.1016/B978-0-12-814152-6.00017-5.

  36. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  37. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    Article  CAS  Google Scholar 

  38. Fiveland WA. Discrete ordinates solution of the radiation transport equation for rectangular enclosures. J Heat Transf. 1984;106:699–706.

    Article  Google Scholar 

  39. Fiveland WA. A discrete-ordinates method for predicting radiative heat transfer in axisymmetric enclosures. ASME Paper No. 82-HT-20; 1982.

  40. Ibrahim A, Lemonnier D. Numerical study of coupled double-diffusive natural convection and radiation in a square cavity filled with AN2–CO2 mixture. Int Commun Heat Mass Transf. 2009;36:197–202.

    Article  CAS  Google Scholar 

  41. Ziabakhsh Z, Domairry G. Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer. Adv Theor Appl Mech. 2008;1(2):79–94.

    CAS  Google Scholar 

  42. Xinhui S, Zheng L, Ping L, Zhang X, Zhang Y. Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls. Int J Heat Mass Transf. 2013;67:885.

    Article  Google Scholar 

  43. Ashraf M, Kamal MA, Syed KS. Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk. Appl Math Model. 2009;33:1933–43.

    Article  Google Scholar 

  44. Ashraf M, Kamal MA, Syed K. Numerical simulation of flow of micropolar fluids in a channel with a porous wall. Int J Numer Methods Fluids. 2011;66:906–18.

    Article  Google Scholar 

  45. Bellman R, Kalaba R. Quasilinearization and nonlinear boundary value problems. New York: Elsevier; 1965.

    Google Scholar 

  46. Lakshmikantham V, Leela S, Sivasundaram S. Extensions of the method of quasilinearization. J Optim Theory Appl. 1995;87:379–401.

    Article  Google Scholar 

  47. Lakshmikantham V, Malek S. Generalized quasilinearization. Nonlinear World. 1994;1:59–63.

    Google Scholar 

  48. Mirzaaghaian A, Ganji DD. Application of differential transformation method in micropolar fluid flow and heat transfer through permeable walls. Alex Eng J. 2016;55:2183.

    Article  Google Scholar 

  49. Lok YY, Ioan P, Chamkha AJ. Non-orthogonal stagnation point flow of a micropolar fluid. Int J Eng Sci. 2007;45:173–84.

    Article  CAS  Google Scholar 

  50. Ashraf M, Anwar KM, Syed KS. Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks. Acta Mech Sin. 2009;25:787–94.

    Article  CAS  Google Scholar 

  51. Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM. Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal. 2014;2014:1–20. https://doi.org/10.5899/2014/cna-00166.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the honourable reviewers and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Ashraf, M. & Ali, K. Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls. J Therm Anal Calorim 144, 941–953 (2021). https://doi.org/10.1007/s10973-020-09542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09542-w

Keywords

Navigation